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A few definitions for software life cycle models from IEEE Std 610.12-1990, the IEEE
Standard Glossary of Software Engineering Terminology.

• Waterfall Model.  A model of the software development process in which the constituent
activities, typically in a concept phase, requirements phase, design phase, implementation
phase, test phase, and installation and checkout phase, are performed in that order, possibly
with overlap but with little or no iteration.

• Incremental Development.  A software development technique in which requirements
definition, design, implementation, and testing occur in an overlapping, iterative (rather than
sequential) manner, resulting in incremental completion of the overall software product.

• Rapid Prototyping.  A type of prototyping in which emphasis is placed on developing
prototypes early in the development process to permit early feedback and analysis in support
of the development process.

• Prototyping.  A hardware and software development technique in which a preliminary
version of part or all of the hardware or software is developed to permit user feedback,
determine feasibility, or investigate timing or other issues in support of the development
process.

• Spiral Model.  A model of the software development process in which the constituent
activities, typically requirements analysis, preliminary and detailed design, coding, integration,
and testing, are performed iteratively until the software is complete.

Software Life Cycle Models
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Presentation Approach

• System Integration Origins and Basics
• Different Perspectives- Good Practices

– The Experts: Rechtin, Grady, Forsberg/Mooz, Martin

– INCOSE SE Process Activities “How To” Guide
– SECAM

• The Checklist



The Need for System Integration
“Relationships among the elements are what give systems their added value”  - Rechtin 1991
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Where is System Integration in
the SE Process Flow ?
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Project Cycle “V” Chart

Derived from:
Forsberg & Mooz 1991
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Remember the “Big Picture”
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SECAM* Perspective

* Systems Engineering Capability Assessment Model,
    Version 1.50, June 1996, INCOSE CAWG

IS 
INTEGRATION 

DONE AT LEAST 
INFORMALLY ?

IS A FOCUSED 
RESPONSIBILITY 

TAKEN FOR 
INTEGRATION ?

IS THERE A 
DEFINED 

INTEGRATION 
PROCESS ?

CAN PROBLEMS 
WITH THE 

INTEGRATION 
PROCESS BE  
DETECTED ?

IS THE 
INTEGRATION 

PROCESS BEING  
IMPROVED BY 
EXPERIENCE ?

1 2 3 4 5
Level Level Level Level Level

Performed Managed Defined Measured Optimizing



System Integration Checklist
Major Activities To Be Tailored

1.  Define Context of Effort
2.  Define Mission and Users
3.  Define Operating Environment
4.  Analyze Interactions
5.  Prepare ICDs
6.  Evaluate User Interfaces
7.  Coordinate with Test Plans
8.  Evaluate System Performance
9.  Conflict Resolution



SYSTEM INTEGRATION CHECKLIST (1 of 3)

TASK/ACTIVITY TOOLS &
PRODUCTS

Define Context of Effort
Write SOW to include all tasks

Context Diagram
Statement of Work

Define “Internal” and “External”
Bound effort to avoid over-extension

Define Mission and Users
Study existing information, know key players, 
reference existing systems and practices

Define Operating Environment
Enhance documentation, understand driving 
conditions

Concept of Ops/ORD
Distributions
List of Constraints

Environmental Descriptions
External Drivers

1.

2.

3.

Understand everything that can adversely 
impact the system

Understand system’s purpose, user’s
perspective, and existing infrastructure



SYSTEM INTEGRATION CHECKLIST (2 of 3)

TASK/ACTIVITY TOOLS &
PRODUCTS

4.

5.

6.

Tabulate relationships which may be sources 
of risk

N2 Chart
Risk Mitigation Plan

Define interface details and get concurrence
Interface Control
Documents (ICDs)

Involve User agents to analyze designs “on 
the fly”

Mockups
User Feedback/Interviews

Involve users, get reactions, iterate

Record agreements on interface designs

(include requirements, components, ...)
Identify interfaces, eliminate non-problems

Analyze Interactions

Prepare ICDs

Evaluate User Interfaces



SYSTEM INTEGRATION CHECKLIST (3 of 3)

TASK/ACTIVITY TOOLS &
PRODUCTS

7.

8.

9.

Ensure efforts mesh with test plan & schedule
Test Plan and Descriptions

What needs to be connected ?
When do things need to be ready ?

Identify MOEs that are at risk
MOEs
System Simulation

Communicate with the project team
Action Item (AI) List
System Simulation

Predict performance (re: interactions)
Trade off candidate solutions

Keep up with the latest issues (keep AI list)
Always have a contingency plan

Coordinate with Test Plans

Evaluate System Performance

Conflict Resolution



The Final Word ...

• System Integration starts at the beginning:
– Know the system’s boundaries, mission, users, and

operating environment
– Establish a mindset through requirements, analysis,

design, and test activities

• System Integration acts as the “glue”:
– Work the interactions (interfaces, interference, etc.)
– Coordinate with testing
– Referee and resolve conflicts


